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PET tracing of biodistribution
for orally administered 4Cu-abeled polystyrene in mice
(Journal of Nuclear Medicine 2022) IF=10.057
Pre/post—natal exposure to microplastic
as a potential risk factor for autism spectrum disorder
(Environment International 2022) IF=9.621
Enhanced ASGR2 by microplastic exposure leads

toresistance to therapy in gastric cancer(Theranostics 2022)
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PET Tracing of Biodistribution for Orally Administered
°*Cu-Labeled Polystyrene in Mice

: 1,2 c pone sl . - 1,2 : .1 : 1 1,2
Changkeun Im* =, Hyeongi Kim*", Javeria Zaheer ~, Jung Young Kim', Yong-Jin Lee ', Choong Mo Kang ~, and

- i 13
Jin Su Kim

"Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Korea; and *Radiological and Medico-Oncological

Sciences, University of Science and Technology, Seoul, Korea

Plastics are used commonly in the world because of their convenience
and cost effectiveness. Microplastics, an environmental threat and
human health risk, are widely detected in food and consequently
ingested. However, degraded plastics are found everywhere, creating
an environmental threat and human health risk. Therefore, real-time
monitoring of orally administered microplastics to trace them in
the body is tremendously important. Methods: In thisstudy, to visualize
their absorption path, we labeled polystyrene with [°*Cu]Cu-DOTA. We
prepared radiolabeled polystyrene with ®*Cu. Afterward, [®*Cu]Cu-
DOTA-polystyrene was orally administered to mice, and we evaluated
its transit and absorption using PET imaging. The absorption path and
distribution of [**Cu]Cu-DOTA-polystyrene were determined using
PET over 48 h. Ex vivo tissue radio-thin-layer chromatography (TLC)
was used to demonstrate the existence of [**Cu]Cu-DOTA-polystyrene
in tissue. Results: PET images demonstrated that [f*Cu]Cu-DOTA-
polystyrene began to transit to the intestine within 1 h. Accumulation
of [**Cu]Cu-DOTA-polystyrene in the liver was also observed. The bio-
distribution of [F*Cu]Cu-DOTA-polystyrene confirmed the distribution of
[**Cu]Cu-DOTA-polystyrene observed on the PET images. Ex vivo
radio-TLC demonstrated that the detected y-rays originated from
[**Cu]Cu-DOTA-polystyrene. Conclusion: This study provided PET
evidence of the existence and accumulation of microplastics in tissue
and cross-confirmed the PET findings by ex vivo radio-TLC. This infor-
mation may be used as the basis for future studies on the toxicity of

B s s e B

microplastics have been found in mussels purchased at markets in
Belgium (/5). Considering that microplastics are widely detected
in food. we can assume that microplastics are ingested along with
the contaminated tood. Therefore, it is highly likely that human con-
sumption of microplastics is widespread. To understand the full sig-
nificance of microplastic ingestion, the absorption path for
microplastics ingested with foods needs to be visualized.

PET imaging is a powerful tool for observing absorption, distribu-
tion, metabolism, and excretion (/6). PET can also be used to visualize
the in vivo distribution of toxic substances labeled with radioactive iso-
topes, including diesel exhaust (/7), and inhaled aerosols of toxic
household disinfectants (/8). Figure 1 shows a schematic of the study.
We first identified the absorption path and distribution ot microplastics
using PET. Microplastic polystyrene was labeled with %Cu ([64(‘11]('11.
to yield [**Cu]Cu-DOTA-polystyrene) and then was orally adminis-
tered to mice. In a separate experiment, **Cu was orally administered
as a control to assess the effects of the harsh stomach conditions on
dechelated **Cu. PET was performed to monitor the absorption and
distribution of [MC u]Cu-DOTA-polystyrene or %Cu over 48 h. The
ex vivo biodistributions of [64(_‘11](_‘11-DOTA-polysryrene or *Cu
was measured. Ex vivo tissue radio—thin-layer chromatography
(TLC) was performed to identify whether vy-rays emitted from the tis-
sue originated from [**CulCu-DOT A-polystvrene or from **Cu.
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PET/ CT imaging and Bio-distribution of
64Cu-DOTA-PS

Oral administration of 4Cu-DOTA-PS

« amino—polystyrene (0.2-0.3 um, Spherotech, Lake Forest, IL, USA)

« OIMIZ2tAE 0 DOTA chelatorE 2206t A &HE SRR AL Cu-64E Ol=of X &,

o OIRALY [64Cu]Cu-DOTA-polystyrene (4.81 MBqg/57.8 ug/100 uL) 100 ppm / 100 uCi
O] OINIZctAE B E0 .

« OMOIAZ0IE{Em): 100822 1m. BE Helatet 2J1J180 um <

Journal of Nuclear Medicine
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PET tracing of biodistribution for orally administered 64Cu-labeled polystyrene in
mice

B Authors and Affiliations
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Purpose: Plastics are used commenly in the world because of its convenience and cost-
effectiveness. Microplastics, an envirenmental threat and human health risk, are widely delected in
food, and consequently ingested. However degraded plastics are found everywhere, which cause
environmental threat and human health risk. Therefore, real-lime monitoring of orally administered
microplastics is tremendously important to trace them in the body.

Methods: In this study, to visualize their absorption path, we labeled polystyrene with [*cujcu-
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Polyethylene microsphere (PE)

PE accumulation in brain
Disturbance of metabolism
Interference of gene expression

.. QOral fed

‘ ,»_j PE accumulation in gut
Dimeter - 10 — 20 pm PE mice model Disturbance of microbiome
Lifetime Prenatal model (During pregnancy) Behavior study
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& Mothers PE treatment Nestlet shredding, Marble burying test)

9 fertilized 6\ Fo) Pregnant
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f—‘ Social interaction ¥
C_‘ Offspring
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44?_\ ) ‘ J compulsive behavior *
Post weaning period model
3 PE treatment Spatial working memory §
| 2W h g
4W99k5‘°|d 100 ppm/100 ul/day | - -
Impaired Repetitive
social

Puberty model behaviors

interaction

PE treatment
Disturbance of Disturbance of
6 weeks-old 100 ppm/100 ul/day ) metabolism e ahins

Adult model

PE treatment PE exposure induced

Autism-like symptom

6 weeks-old 4, ppM/100 ul/day
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* PE (1.005 g/cc, 10-20 um, 0.1 g; Cosphereic LLC,
Santa Barbara, USA)
100 PPM /100 pL : (10 pg/day) ~ equivalent human
dose : 1.27 mg/ kg /day (76 mg for 60 kg human)

 PE accumulation in tissue

* 16S Metagenomic sequencing

* |dentification of relevant gene using microarray
* Gene confirmation using qPCR

* Molecular Imaging using FDG PET, MRS

» Behavior study (3 chamber, Y-maze (spatial working
memory), Nestlet shredding, Marble burying,
Adhesive Removal test (anxiety), Open Field test
(anxiety)



Animal model
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PE was deposited in the brain
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ASD traits of gut microbiota after PE exposure
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Ruminiclostridium sufflavum
Desulfovibrio desulfuricans
Other

Catabacter hongkongensis
[Ruminococcus] gnavus
Alistipes onderdonkii
Gemella palaticanis
Gracilibacter themotolerans
Muribaculum intestinale
Bamesiella intestinihominis
Desulfosporosinus fructosivorans
Clostridium oryzae
[Clostridium] leptum
Vallitalea pronyensis
Al stipes putredinis

B Biautia faecis

Bacteroides massiliensis
Phocea massiliensis
Breznakia pachnodae
Alistipes obesi

Kineothrix alysoides
Corynebacterium mastitidis
Lactobacillus reuteri
Bacteroides caecimuris

*** - - --
.ooo.

A total of 12 species (B. pachnodae, G.
thermotolerans, B. faecis, D. fructosivorans, A.
onderdonkii, A. obesi, C. leptum, C. oryzae, C.
hongkongensis, G. palaticanis, R. sufflavum, D.
desulfuricans, and R. gnavus) were not
observed in control mouse fecal samples;
however, these species have sprung after PE
exposure in mice.

Decrease of Lactobacillus reuteri

. protects the intestinal barrier and controls
permeability (Dicksvedet al. 2012)

: decreased in ASD mouse models

Increase of Alistipes putredinis and Barnesiella
intestinih -> found in children with ASD



Disturbed metabolites determined by proton magnetic

resonance spectroscopy ('H-MRS)
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Decreased binding potential and regional glucose
metabolism in the prefrontal lobe
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Defective dopamine transporter
signaling has been linked to ASD
(DiCarloet al. 2019).
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Decreased glucose metabolism in the left
prefrontal lobe (FrA), which is consistent with
the clinical PET findings of ASD (Hwanget al.
2017). Decreased glucose metabolism in the
FrA has been correlated with working
memory deficits (Antonio H. Lara 2015).

A working memory deficit is a typical
symptom of ASD (Evelien M Barendseet al.
2013).



Disrupted gene expression in the brain

Prefrontal cortex Hippocampus
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o <t EGR-1 : associated with neuropsychiatric
JE = it disorders (Galloet al. 2018).
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Sl ARC : associated with the pathogenesis of
5CBiser multiple neuropsychiatric disorders (Galloet
Lof” al. 2018; Greeret al. 2010).

Gm30ses When ubiquitin processes are disrupted,
ARC proteins accumulate in neurons, a
phenomenon that has also been associated
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Prefrontal cortex : 18 genesincreased /15 .
genes decreased expression with ASD (Greeret al. 2010).
Hippocampus region - 14 genes increased / CDKNTA, upregulated gene expression in
18 decreased expression ASD (Jaume Forés-Martos 2019).
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g 14 L g g:l EGR-1: early growth response protein 1
e el . N ARC : activity—regulated cytoskeleton-associated protein
0 T
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Increase In cytokine
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It is assumed that an increase in cytokine levels can induce
inflammation in ASD (Masiet al. 2017).



ASD-like traits in the prenatal model

Prenatal Parents ‘ PE treatment Offspring
model (Fq) ‘ 2 weeks Behavior study
Durin —— -
St S C57BLIG) 3 Chambertest
ol e 100 ppm /100 ul/ day 2e Open fieldtest
A3 cnd ¢ 3 Y-maze test
- s ey Mestlet shredding test
CD-1 Marble burying test
B Social Interaction 5-6 week-old
C57BL/GJ CD-1 _ 60, - *
slel% ' £ E
— | " ey ol
= 5 apd = @ = 23
e
> 5 =
o O m 204 ._-
E @ 10 e
) 3
= L o T T T T
o Cantrol PE Candral FE
CAHTBLE cD-1
C a0 # 0.05
s -
= 2 404 e
= Z
50 3
D S 20
2 2
-
o o T T T T
& Contral FE Contrel PE
CSTBLIES co-1




ASD-like traitsin the prenatal model
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ASD like traits in postweaning, puberty, and adult model
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ASD like traits in postweaning, puberty, and adult model
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Pre/post-natal exposure to microplastic as a potential risk factor for autism
spectrum disorder

Authors and Affiliations

Abstract

In common with the increase in environmental pollution in the past 10 years, there has also been a
recent increase in the prevalence of autism spectrum disorder (ASD). In this regard, we
hypothesized that exposure 1o microplastics is a potential risk factor for ASD. To evaluate the validity
of this hypothesis. we initially examined the accumulation of polyethylene (PE) in the brains of mice
and then assessed the behavioral effects using mouse models at different life stages, namely,
prenatal, post-weaning, puberty, and adult models. Based on typical behavioral assessments of
autistic traits in the model mice, we established that ASD-like traits were induced in mice after PE
feeding. In addition, we examined the induction of ASD-like traits in respense to microplastic
exposure using paositron emission tomoegraphy, magnetic resonance spectroscopy, quantitative real-
time polymerase chain reaction, microarray, and microbiome analysis. We believe these findings
provide evidence in microplastics as a potential risk factor for ASD.
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Enhanced ASGR2 by microplastic exposure leads to
resistance to therapy in gastric cancer
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Abstract

Background: Microplastics (MPs) are a new global environmental threat. Previously, we showed the
biodistribution of MPs using [64Cu] polystyrene (PS) and PET in mice. Here, we aimed to identify whether
PS exposure has malignant effects on the stomach and induces resistance to therapy.

Methods: BALB/c nude mice were fed 1.72 x 104 particles/mL of MP. We investigated PS accumulation
in the stomach using radioisotope-labeled and fluorescent-conjugated PS. Further, we evaluated whether
PS exposure induced cancer stemness and multidrug resistance, and whether it affected tumor
development, tumor growth, and survival rate in vivo using a 4-week PS-exposed NCI-N87 mouse model.
Using RNA-Seq analysis, we analyzed whether PS exposure induced gene expression changes in gastric
tissues of mice.

Results: PFT imaging resilts cshowed that a cingle dose of T64Cu1-PS remained for 74 h in the mice
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xenograft model (ex vivo data)
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in vitro & ex vivo confirmation (ASGR2)
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Confirmation of ASGR2
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