Valorization of Waste Plastic for the Synthesis of Sustainable Aviation Fuel (SAF)

Jeong Gil Seo

Department of Chemical Engineering Hanyang University South Korea

08-05-2022

Research Trend

- ✓ Sustainable aviation fuel
- ✓ Plastic waste
- ✓ Plastic waste to SAF
- ✓ Pyrolysis
- ✓ Solvolysis
- ✓ Hydrogenolysis
- **3** Ongoing Research
- Plastic upcycling to SAF
- ✓ Preliminary reaction results
- ✓ Ongoing reactions

Outlooks and Conclusion

2

4

Introduction

HANYANG UNIVERSITY

SEOUL, KOREA

Aviation Industry Goals

Clean Skies for Tomorrow Sustainable Aviation Fuels as a Pathway to Net-Zero Aviation, INSIGHT REPORT NOVEMBER 2020

Summary of technical progress since 2014

Production route	Plant in 2014	Plant in 2018
Alcohol-to-Jet	1. None	 Several at pilot scale⁷ Ekobenz⁸ plant in commissioning (23 kt/year) Several other companies including Lanzatech and Gevo planning commercial-scale plant⁹
Gasification + FT	 5. 1 plant operational (TRI plant processing black liquor ~20 kt/year) 6. 1 plant planned (UPM, since cancelled) 	 7. TRI black liquor gasifier shut down 8. Fulcrum¹⁰ and Red Rock¹¹ have plant under construction (combined 75 kt/year capacity)
Pyrolysis	9. None focusing on aviation fuels	 Still no pyrolysis plant upgrading to jet Ensyn/Envergent have ability to produce 'green diesel'¹², but no plant focussing on this IH² pilot plant in India¹³
Sugars to hydrocarbons	 Amyris had operating commercial-scale aerobic fermentation plant (33 kt/year) 	15. Amyris plant has since been sold to DSM ¹⁴ ; Construction of two other aerobic fermentation plant is ongoing but these are not focused on aviation fuel. ¹⁵
Oil-based processes	 15. Many plant globally 16. 2.5 mt/year of HEFA capacity worldwide, and 1.3 mt more planned 	 17. Over 4.5 mt capacity in dedicated hydro-treating plant 18. Over 2 mt co-processing at refineries
Power-to-liquids: Fischer-Tropsch	19. None	20. Sunfire planning a demonstration facility in Norway (8 kt/year) ¹⁶

SUSTAINABLE AVIATION FUELS ROAD-MAP, Fueling the future of UK aviation

7 Technical pathways to date [SAF Approved]

derived middle distillates

Year approved	Techno pathwa		Blend limit	Key players
2009	FT	Fischer-Tropsh Synthesized Paraffinic Kerosene (FT-SPK)	50%	
2011	HEFA	Hydroprocessed Esters and Fatty Acids (HEFA- SPK)	50%	NESTE world energy
2014	SIP	Hydroprocessed Fermented Sugars Synthesized Isoparaffins (HFS-SIP)	10%	
2015	FT-A	ST SPK with Aromatics (FT-SPK/A)	50%	
2016/18	ATJ	Alcohol to Jet Synthesized Paraffinic Kerosene (ATJ-SPK) Isobutanol and Ethanol	50%	🗱 gevo LanzaTech 🕅
2020	СНЈ	Catalytic hydrothermolysis jet fuel (CHJ), a type of synthetic kerosene	50%	🚱 ara 😻
2020	ннс	HHC-SPK: similar to HEFA but utilizes biological derived hydrocarbons from algae	10%	IHI
2018/20		ocessing of renewable content with crude oil-	5%	

Sustainable Aviation Fuel Review of Technical Pathways

Molecular Catalysis & Reaction Engineering Lab

Commercialization of SAF

Successful commercial flights since 2014

Fuel Name	Date certified	Maximum blend level
Fischer-Tropsch - Synthetic paraffinic kerosene (FT-SPK)	2009	50%
Hydroprocessed Esters & Fatty Acids (HEFA) - Synthetic paraffinic kerosene (SPK)	2011	50%
Synthetic Iso-Paraffinic fuels (SIP)	2014	10%
Fischer-Tropsch - Synthetic paraffinic kerosene with added aromatics (FT-SPK/A)	2015	50%
Alcohol-to-jet	2016 (updated 2018 to include more feedstocks and higher blend %)	50%

Sustainable Aviation Fuel Review of Technical Pathways

SAF in D4054 Qualification Process

ASTM Progress	Pathway	Feedstock	Task Force Lead
Phase 2 Testing	Hydro-deoxygenation Synthetic Kerosene (HDO-SK)	Sugars and cellulosics	Virent
	Catalytic Hydrothermolysis Synthetic Kerosene (CH-SK)	Renewable fats oils and greases FOG	ARA
Phase 1 OEM Review	High Freeze Point Hydroprocessed Esters and Fatty Acids Synthetic Kerosene (HFP HEFA-SK)	Renewable fats oils and greases	Boeing
Phase 1 Research Report	Hydro-deoxygenation Synthetic Aromatic Kerosene (HDO-SAK)	Sugars and cellulosics	Virent
Phase 1 Testing	Alcohol-to-Jet Synthetic Kerosene with Aromatics (ATJ-SKA)	Sugars and lignocellulosics	Byogy, Swedish Biofuels
	Integrated Hydropyrolysis and Hydroconversion (IH ²)	Multiple	Shell
	Hydroprocessed Esters and Fatty Acids Synthetic Paraffinic Kerosene (HEFA-SPK)	Hydrocarbon-rich algae oil	IHI

Sustainable Aviation Fuel Review of Technical Pathways

Hydrocarbons for SAF

Summary of four classes of SAF hydrocarbons

- Can be obtained from
- 1. Biomass
- 2. Carbon dioxide
- 3. Waste Plastic

Sustainable Aviation Fuel Review of Technical Pathways

Aromatics and Cyclo-alkanes for SAF

Compared to biomass and CO₂, aromatic plastic waste has prominent advantages

- Simpler molecular structure contrasting the complexity of biomass
- Much lower oxygen contents
- Abundant aromatic functionality
- Selective production jet fuels

HANYANG UNIVERSITY

SEOUL, KOREA

Angew. Chem. Int. Ed. 10.1002/anie.202011063

Solving Two Problems at One

1960-2018 Data on Plastics in MSW by Weight (in thousands of U.S. tons)

Management Pathway	1960	1970	1980	1990	2000	2005	2010	2015	2017	2018
Generation	390	2,900	6,830	17,130	25,550	29,380	31,400	34,480	35,410	35,680
Recycled	_	_	20	370	1,480	1,780	2,500	3,120	3,000	3,090
Composted	_	-	-	-	_	-	-	_	_	-
Combustion with Energy Recovery	-	-	140	2,980	4,120	4,330	4,530	5,330	5,590	5,620
Landfilled	390	2,900	6,670	13,780	19,950	23,270	24,370	26,030	26,820	26,970

Only ~ 7 % of the generated plastics are being recycled to date

- Incineration: combustion of organic substances contained in waste materials; converts the waste into ash, flue gas, and heat
- Landfill: plastic wastes are buried under the ground

HANYANG UNIVERSITY

SEOUL, KOREA

 Mechanical Recycling: processing of plastic waste into secondary raw material or products without significantly changing the chemical structure of the material

Plastic to SAF Technologies

Existing pathways for plastic waste recycling

HANYANG UNIVERSITY

SEOUL, KOREA

- ☆ Chemical degradation → pyrolysis → allows to handle relatively mixed plastic waste streams → poor selectivity
- Alternative strategies → hydrolysis, alcoholysis, hydrogenation and aminolysis → have been developed to handle specific aromatic plastics in particular PET → sorting as a prerequisite

Energy Conversion and Management 254 (2022) 115243

Pyrolysis

 Pyrolysis generally refers to the thermal processes to degrade polymers at relatively high temperatures under an inert atmosphere into gases, liquid products, and solid chars.

Pyrolysis Reactors and Product Yield

Renewable and Sustainable Energy Reviews 73 (2017) 346–368354

Molecular Catalysis & Reaction Engineering Lab

HANYANG UNIVERSITY

Catalytic Pyrolysis of Mixed Plastic

pyrolysis of municipal polymer waste at (a) 400 °C, (b) 450 °C, and (c) 500 °C for different catalysts and their comparison with thermal pyrolysis.

Process Safety and Environmental Protection 164 (2022) 449–467

- The co-pyrolysis of plastic furnishes a beneficial strategy to possibly improve the quality of gas or liquid fuels, attenuate carbon emissions, and aid the waste management
- The synergistic effect has enabled fast heating rate and rapid process time.

Limitations of pyrolysis

HANYANG UNIVERSITY

SEOUL, KOREA

- Energy-intensive process
- Low selectivity to SAF
- Environment problem (environmental emission standard)

Solvolysis

- Chemical depolymerization (solvolysis) involves using a reagent to decompose the polymer matrix.
- The name of the technique depends on the reagent used: hydrolysis when the reagent is water, alcoholysis when it is an alcohol, and glycolysis when glycol is used.

Limitations of Solvolysis

- Developed to handle specific aromatic plastics in a particular PET
- Sorting as a prerequisite

HANYANG UNIVERSITY

SEOUL, KOREA

Not applicable for aliphatic plastics

J Polym Sci.2020;58:1347-1364.

Hydrogenolysis

- Hydrogenolysis is a catalytic chemical method to break down the CC bond or C heteroatom bonds such as CO(hydrodeoxygenation, HDO) in the feedstock by using H₂.
- Although thermochemical conversion is promising for handling mixed plastic waste, it typically occurs at high temperatures (300–800°C).

Advantages

HANYANG UNIVERSITY

SEOUL, KOREA

- Mild reaction temperature
- Highly selective
- Ease of product separation
- Adaptable to a number of plastics
- Wide range of C atalyst selection and design

Solvent-assisted Hydrogenolysis

Effect of solvent

Solvation Process

HANYANG UNIVERSITY

SEOUL, KOREA

Entry	Feedstock	Catalyst	Temperature (°C)	Time (h)	C8–C16 (wt %)	C17-C22 (wt %)	C23-C38 (wt %)
1	HDPE	5% Cu/C	220	1	0	0	0
2	HDPE	5% Fe/C	220	1	0	0	0
3	HDPE	5% Ni/C	220	1	0	0	0
4	HDPE	5% Pt/C	220	1	0	0	0
5	HDPE	5% Pd/C	220	1	0	0	0
6	HDPE	5% Rh/C	220	1	0	0	0
7	HDPE	5% Ru/C	220	1	60.8	14.1	0
8	HDPE	5% Pt/C	250	6	0.2	0.16	0.23
9	HDPE	5% Pd/C	280	1	0.29	0.01	0.1
10	HDPE	5% Pt/C	280	1	0.28	0.37	0.42
11	HDPE	5% Rh/C	280	1	21.7	20.2	33.4

Reaction conditions: 0.1 g HDPE, 0.05 g catalyst, 25 mL n-hexane, p(H2) 30 bar, 700 rpm.

Table 2. Performance of the screened catalysts in the depolymerization of HDPE

Effect of Hydrogen Pressure

- Ru/C was a highly active catalyst for the liquid-phase hydrogenolysis of HDPE
- Solvent effects were prominent in the depolymerization of HDPE
- H₂ partial pressure played a significant role in the HDPE depolymerization pathway

Chem Catalysis 1, 437–455, July 15, 2021

Degradation/Hydrogenation

wt% with respect to reactant mass; reaction time, 2 h.

HANYANG UNIVERSITY

SEOUL, KOREA

Tandem Hydrogenolysis/Aromatization

Solvent-free disassembly of polyethylene catalyzed by Pt/g-Al₂O₃ in an unstirred mini-autoclave reactor at 280°C.

Zhang et al., Science 370, 437-441 (2020)

HANYANG UNIVERSITY SEOUL, KOREA

Upgrading of Mixed Plastic in Octane

IANYANG UNIVERSITY

SEOUL, KOREA

Reaction conditions: 15 mg PET, 15 mg PC, 15 mg PS, 15 mg PPO, 60 mg Ru/Nb₂O₅, 4 g octane, 0.5 MPa H₂, 320 °C, 16 h.

- They reported one-pot hydrogenation of mixed plastic waste to arenes
- Ru/Nb₂O₅ catalyst plays two roles in the selective cleavage of C–O/C–C bonds in aromatic plastic waste into arenes:
- (a) 60 mg Ru/Nb₂O₅, 4 g octane, (b) 60 mg Ru/Nb₂O₅, 2 g octane; (c) 30 mg Ru/Nb₂O₅, 4 g octane.

Angew. Chem. Int. Ed. 10.1002/anie.202011063

Molecular Catalysis & Reaction Engineering Lab

65%

Alcoholysis/Solvent-free Hydrogenation

Alcoholysis of PET waste

Alcoholysis/Solvent-free Hydrogenation

Molecular Catalysis & Reaction Engineering Lab

MCREL Approach

One-pot catalytic conversion of aromatic plastic waste back to arenes for aviation fuels

 Identify a catalyst that enables the selective cleavage of C–O and/or C–C bonds while preserving the aromatic rings

From C–O/C–C activation chemistry,

HANYANG UNIVERSITY

SEOUL, KOREA

 Combination of metal sites with high hydrogenation property and acidic sites with the strong ability to activate C–O/C–C bonds is required

Raw Material

Why?

Constructed from aromatic monomers by interunit C–O and/or C–C linkages

Many widely used plastics

- Polyethylene terephthalate (PET)
- Polystyrene (PS)
- Polycarbonate (PC)

HANYANG UNIVERSITY

SEOUL, KOREA

Polyphenylene oxide (PPO)

They comprise all common types of linkages in aromatic plastics

- Ester linkage
- Ether linkage,
- C–C
- combinations of C–O and C–C linkages

Reaction Mechanism

For C-O bond cleavage,

- Lewis acid sites (support) enable the selective adsorption and activation of C-O bond
- Then, with the help of dissociated H species over Ru, the cleavage of C-O bonds in aromatic plastics is efficiently achieved

For C-C bond cleavage,

HANYANG UNIVERSITY

- The benzene ring is first adsorbed on Lewis acid sites
- Then the adsorbed benzene ring is protonated by Brønsted acid sites to proceed the activation of the C-C bond
- Following that, the dissociated H species on metal clusters attack the weakened C-C bond to break it

Reaction Results

Recycled plastic

Size reduction, reaction mixture preparation

Product separation using ethyl acetate as organic solvent

Water as a solvent

ANYANG UNIVERSITY

- Polar solvent that binds reasonably strongly with polar functionalities in PET thus, weakening the inter-chain interactions
- > Does not react with hydrogen over metal-solid acid catalysts at the reaction temperature

Reaction Results

Catalysts	PET conversion (%)	P-xylene S (%)	Toluene S (%)	m-Cyclohexane S (%)	Others
Ru/SNb ₂ O ₅	72.0	53.2	19.2	4.10 (MCH+CH)	23.5
Pd/SNb ₂ O ₅	57.1	6.3	4.5	8.7 (MCH+CH)	80.4
Ru/ZSM-5	81.0	5.7	7.1	32.1 (MCH+CH)	55.1
Pd/ZSM-5	62.0	1.9	1.6	24.9 (MCH+CH)	71.5
Ru/ZrO	56.3	11.1	13.2	16.8 (MCH+CH)	58.9
Pd/ZrO	37.3	4.2	2.7	20.5 (MCH+CH)	72.6

Reaction conditions: 0.2 g PET, 0.2 g catalyst, 20 g H₂O, 240 °C, 12 h, 40 bar H₂

HANYANG UNIVERSITY

SEOUL, KOREA

- Lewis acid sites (NbOx species) enable the selective adsorption and activation of C-O bond
- For C-C bond cleavage, benzene ring is first adsorbed on Lewis acid sites (NbOx species) of Nb₂O₅
- Then the adsorbed benzene ring is protonated by Brønsted acid sites on Nb₂O₅
- Following that, the dissociated H species on Ru attack the weakened Csp2-Csp3 bond to break it.

HPLC Chromatogram of the Product Mixture

Reaction Results

2026 C	
Con Cola	2
Lel	

Substrates	Structures	Theoretical o pure plasti		Elemental analysis (wt %)	
		С	Н	С	Н
Coca-Cola bottle	[>-<>-<]_	62.50	4.17	61.94	4.16

Catalysts	CCB conversion (%)	P-xylene S (%)	Toluene S (%)	m-Cyclohexane S (%)	Others
Ru/SNb ₂ O ₅	86.2	47.2	21.3	10.2 (MCH+CH)	21.3
Pd/SNb_2O_5	70.1	8.9	9.7	18.1(MCH+CH)	63.3
Ru/ZSM-5	94.0	7.5	7.1	36.2 (MCH+CH)	49.2
Pd/ZSM-5	77.0	3.8	4.9	31.9 (MCH+CH)	59.4
Ru/ZrO	71.3	15.3	14.6	20.0 (MCH+CH)	50.1
Pd/ZrO	52.3	6.7	9.1	19.7 (MCH+CH)	64.5

Reaction conditions: 0.2 g CCB, 0.2 g catalyst, 20 g H₂O, 240 °C, 10 h, 40 bar H₂

Water as a solvent

HANYANG UNIVERSITY

SEOUL, KOREA

- Is a polar solvent that binds strongly with polar functionalities in PET thus, weakening the inter-chain interactions
- Does not react with hydrogen over metal-solid acid catalysts at the reaction temperature
- Poor performance of Pd catalysts was due to the fast hydrogenation of aromatic rings leading to ring opening and resulting in the formation of chemically more robust C–O linkages

Reaction Results

Temperature	CCB conversion (%)	P-xylene S (%)	Toluene S (%)	m-Cyclohexane S (%)	Others
220	61.6	39.1	11.3	1.2 (MCH+CH)	48.4
240	86.2	47.2	21.3	10.2 (MCH+CH)	21.3
260	91.3	41.7	28.1	7.2 (MCH+CH)	23.0
280	97.1	36.0	29.3	9.1 (MCH+CH)	25.6

Reaction conditions: 0.2 g CCB, 0.2 g catalyst Ru/Nb_2O_5 , 20 g H_2O , Varying T, 8 h, 30 bar H_2

Pressure	CCB conversion (%)	P-xylene S (%)	Toluene S(%)	m-Cyclohexane S (%)	Others
30	76.1	31.0	9.7	1.6 (MCH+CH)	57.7
40	86.2	47.2	21.3	10.2 (MCH+CH)	21.3
50	88.3	37.0	17.3	27.3 (MCH+CH)	18.4
60	90.1	24.6	12.0	35.6 (MCH+CH)	27.8

Reaction conditions: 0.2 g CCB, 0.2 g Ru/Nb₂O₅, 20 g H₂O, 220 °C, 8 h, varying P.

The plastic conversion increased monotonically as a function of temperature

HANYANG UNIVERSITY

SEOUL, KOREA

- Lower temperature led to low reaction rates, higher temperature favored the undesirable decarboxylation
- Higher pressure favored the hydrogenation of aromatic ring, lower pressure was not able to complete deoxygenation

Hydrogenolysis Summary

Substrate	Catalyst	Reaction conditions	Products	Yield [%]	Solvent
PE, PP	silica-supported Zr-H	150–190°C, 1 bar H ₂ , 5–15 h	short-chain alkanes	40-84	none
HDPE	Ni and NiMo sulfides/HZSM-5 + Si—Al support	375 °C, ≈ 70 bar H₂, 1 h	gasoline-range fuels	42-65	none
PE	+ SI-AI Support Pt/HZSM-5; Pt/HY; Pt/HMCM-41	120–340 °C, H ₂ flow	paraffins, olefins, and alkyl	N.A.	none
PS, LDPE, PEP	PtRe/SiO ₂	170 °C, \approx 35 bar $D_{_{2\prime}}$ 17 h	aromatics poly (cyclohexylethylene);	>90	isooctane
squalane	Ru/CeO ₂	240°C, 35 bar H ₂ , 348 h	low-M _w oligomers branched, short- chain	≈70	none
squalane	Ru–V/SiO ₂	240 °C, 35 bar H ₂ , 96 h	alkanes branched short-chain alkanes	>70	none
PEs, PP	Ru/CeO ₂	200–240 °C, 20–35 bar H ₂ , 8–144 h	liquid fuels and waxes	83-92	none
PEs	Pt/SrTiO ₃	300 °C, \approx 12 bar H_{2} , 96 h	narrow-range lubri- cant-like products	42-99	none
PET	hydrogenation: Pt/C; HDO: RuCu/SiO ₂	methanolysis: 140–200°C, 3.5–14 h hydrogenation: 80–160°C, 50 bar H ₂ , 1– 10 h	C ₇ /C ₈ cycloalkanes and aromatics	overall ≈94	methanol
PC	HDO: Pt/C+H-β	HDO: 350–400 °C, 40 bar H ₂ , 8–22 h methanolysis: 140–200 °C, 3 h; HDO: 100 °C, 30 bar H ₂ , 1 h	polycycloalkanes	overall ≈72	methanol
PC	Raney Ni+USY	1st step: 190°C, Raney Ni, 1 h 2nd step: 190°C, USY added, 1–5 h (H,-free for the two steps)	C ₆ -C ₁₅ cyclic hydro- carbons	≈75	isopropano
PC	Rh/C+H-USY	200°C, 35 bar H ₂ , 12 h	propane-2,2-diyldicy- clohexane	≈95	water
PEs	Ru/C	200–225 °C, 20–30 bar H ₂ , 2–16 h	gaseous and liquid alkanes, CH ₄	alkanes: ≈ 82 CH₄: ≈ 100	none
PE PET, PS, PC, PPO, and mixtures	$\begin{array}{l} \text{SnPt/}\gamma\text{-}\text{Al}_2\text{O}_3 + \text{Re}_2\text{O}_7/\gamma\text{-}\text{Al}_2\text{O}_3 \\ \text{Ru/Nb}_2\text{O}_5 \end{array}$	200°C, 20–40 bar He, 15 h 280–320°C, 3 bar H ₂ , 8–16 h	low-M _w oligomers arenes	N.A. 75–85	<i>n</i> -pentane H ₂ O/octan
PET	Ru/Nb ₂ O ₅	220°C, 20 bar N₂, 12 h	BTX	≈91	water
LDPE/HDPE	Pt/γ-Al ₂ O ₃	280°C, H ₂ -free, 24 h	alkylaromatics and	55-80	none
PET	single-site MoO ₂ /C	260 °C, 1 bar H₂, 24–96 h	alkylnaphthenes TPA and ethylene	85-90	none
PS	Ru/SNb ₂ O ₅	320 °c, 40 bar H ₂ , 20h	A	~ 72	
PET	Ru/SNb ₂ O ₅	240 °c, 40 bar H ₂ ,12h	Arenes and	~76	
ССВ	Ru/SNb ₂ O ₅	240 °c, 40 bar H ₂ ,8h	cyclic-alkanes	~ 86	water

MCREL

Molecular Catalysis & Reaction Engineering Lab

HANYANG UNIVERSITY

ANYANG UNIVERSITY

- 1. The solid-solid contact problem between plastic and solid catalyst remains a challenge
- 2. Designing an advanced solvent system to increase plastic swelling and solubility is highly desirable
- 3. Establish hydrogen transfer systems using renewable alcohols and acids as hydrogen sources
- 4. Economical and advanced catalysts with higher activity need to be explored
- 5. Improving plastic waste conversion efficiency and selectivity to SAF for mixed plastic
- 6. Systematic experimental process development and condition optimization

Outlooks

Plastic waste

HANYANG UNIVERSITY

SEOUL, KOREA

SAF

Given a policy framework, SAF is perhaps on the cusp of rapid expansion and replication

 Many members of entire supply chains are working towards SAF development (academia, national labs, entrepreneurs, big oil, fuel suppliers, pipeline companies, aviation partners)

Clean Skies for Tomorrow Sustainable Aviation Fuels as a Pathway to Net-Zero Aviation, INSIGHT REPORT NOVEMBER 2020

Conclusion

- Various chemical methods including hydrogenolysis, pyrolysis, solvolysis, and others have been employed to convert a single or mixture of plastic wastes into valuable chemicals.
- The hydrogenolysis reaction of waste plastic can be combined with other reactions such as solvolysis and thermal degradation to increase the selectivity to SAF.
- Ru has shown significant results for most plastic to SAF hydrogenolysis reactions.
- Nb₂O₅ catalyst support plays two roles in the selective cleavage of C–O/C–C bonds in aromatic plastic waste into arenes.
- Ru/Nb₂O₅ does not only catalyze the selective conversion of single-component plastic waste into bulk chemicals (PET to p-xylene and PPO to m-xylene), but also enables the conversion of mixed aromatic plastics into arenes.
- Innovative transformation routes are anticipated in the future to generate more diversified and high-value products from plastic wastes.